Genetics (BIL-250) Review Questions #1

(2-1) What is the historical basis for concluding that the heritable material is composed of DNA or RNA and not protein?

(2-1) Illustrate the phosphodiester bond, and explain why we speak about DNA 5' to 3'.

(2-2) How does the strength of base pairing differ between A, C, G, and T, and why?

(2-3) Illustrate a DNA double helix. Label the bases and sugar-phosphate backbone.

(2-4) How does RNA differ from DNA?

(2-1) What is the relationship between cellular DNA content and the structural or organizational complexity of the organism?

(2-2) Arrange the following in increasing order of eukaryotic chromosome condensation, beginning with the simplest level of organization (1) and ending with the most complex level of organization (6).

 Chromatin fiber
 Metaphase chromosome
 DNA double helix
 Extended section of looped domains on chromosome
 "Beads-on-a-string" form of chromatin
 Condensed section of chromosome

(2-3) How does the DNA of prokaryotes and eukaryotes differ?

(3-1) Draw a DNA replication fork and identify and label the locations of the following major components: (1) 5' and 3' ends of each strand, (2) leading strand, (3) lagging strand, (4) single-stranded binding proteins, (5) DNA polymerase, (6)Okazaki fragments, (7) RNA primer, (8) DNA helicase, (9) DNA ligase, (10) primase.

(3-2) How did the Meselson-Stahl experiment demonstrate that DNA replication is semiconservative and not conservative?

(4-2) Discuss problems and limitations of the "One gene – one enzyme hypothesis" and how it can be better formulated.

(4-3) Explain one example of how mutations in either the α - or β -hemoglobins can produce an altered phenotype that may be adaptive to a particular geographic region.

(5-1) Distinguish between leader sequence, trailer sequence, coding sequence, intron, spacer sequence, nontranscribed spacer sequence, external transcribed spacer sequence, and internal transcribed sequence.

(5-2) Briefly summarize the post-transcriptional modifications and processing events that take place on the primary transcripts of eukaryotic rRNA and protein-coding genes.

(5-3) What major difference concerning the timing of transcription and translation exists between prokaryotes and eukaryotes?

(6-1) Why is degeneracy of the genetic code important for maintaining protein structure and function?

(6-2) What are the 4 main types of amino acids? How many amino acids are there total? How many stop codons exist?

(6-3) Illustrate a peptide bond? Label the N- and C- termini.

(6-4) What distinguishes primary, secondary, tertiary, and quaternary protein structure?

(6-5) What is a framewhift mutation? Why may they be deleterious?

(6-6) What is the wobble in the genetic code?

(6-7) How does tRNA become aminoacylated?

(6-8) Illustrate the site of protein synthesis on the ribosome? Label the P, A, and E sites and indicate the position of the growing peptide before and after elongation.

(7-1) How did Lamarck's and Darwin's concepts of adaptation and inheritance differ?

(7-2) How was Salvador Luria's and Max Delbrück's 1943 experiment with *E. coli* used to test alternative hypotheses about environmental induction of adaptive mutations?

(7-3) Identify and distinguish: transition, transversion, insertion, deletion, indel, missense mutation, nonsense muation, neutral mutation, silent mutation, and frameshift mutation:

(7-4) How might a tRNA gene act as an intergenic suppressor mutation? What other factors involving protein translation might need to be compensated for?

(7-5) What are the differences between base analogs, base modifying agents, and intercalating

agents?

(7-6) What are the important DNA repair mechanisms that exist?